视频

Goldmann tonometer error correcting prism: clinical evaluation

 

Authors McCafferty S, Lim G, Duncan W, Enikov ET, Schwiegerling J, Levine J, Kew C

Received 21 February 2017

Accepted for publication 16 March 2017

Published 3 May 2017 Volume 2017:11 Pages 835—840

DOI https://doi.org/10.2147/OPTH.S135272

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Amy Norman

Peer reviewer comments 2

Editor who approved publication: Dr Scott Fraser

Purpose: Clinically evaluate a modified applanating surface Goldmann tonometer prism designed to substantially negate errors due to patient variability in biomechanics.
Methods: A modified Goldmann prism with a correcting applanation tonometry surface (CATS) was mathematically optimized to minimize the intraocular pressure (IOP) measurement error due to patient variability in corneal thickness, stiffness, curvature, and tear film adhesion force. A comparative clinical study of 109 eyes measured IOP with CATS and Goldmann prisms. The IOP measurement differences between the CATS and Goldmann prisms were correlated to corneal thickness, hysteresis, and curvature.
Results: The CATS tonometer prism in correcting for Goldmann central corneal thickness (CCT) error demonstrated a reduction to <±2 mmHg in 97% of a standard CCT population. This compares to only 54% with CCT error <±2 mmHg using the Goldmann prism. Equal reductions of ~50% in errors due to corneal rigidity and curvature were also demonstrated.
Conclusion: The results validate the CATS prism’s improved accuracy and expected reduced sensitivity to Goldmann errors without IOP bias as predicted by mathematical modeling. The CATS replacement for the Goldmann prism does not change Goldmann measurement technique or interpretation.
Keywords: glaucoma, tonometry, Goldmann, IOP, intraocular pressure, appalnation tonometer, corneal biomechanics, CATS tonometer, CCT, central corneal thickness, tonometer error

 

摘要视频链接Goldmann tonometer error correcting prism