已发表论文

一种多功能靶向纳米剂用于对卵巢癌细胞进行双模态影像引导治疗的效果

 

Authors Chen C, Sun J, Chen S, Liu Y, Zhu S, Wang Z, Chang S

Received 20 September 2018

Accepted for publication 1 December 2018

Published 21 January 2019 Volume 2019:14 Pages 753—769

DOI https://doi.org/10.2147/IJN.S187929

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Alexander Kharlamov

Peer reviewer comments 2

Editor who approved publication: Dr Mian Wang

Purpose: Nanomedicine has emerged as a novel therapeutic modality for cancer treatment and diagnosis. Lipid–polymer hybrid nanoparticles (LPHNPs) are core–shell nanoparticle (NP) structures comprising polymer cores and lipid shells, which exhibit complementary characteristics of both polymeric NPs and liposomes. However, it is difficult to wrap perfluoropentane (PFP) into core–shell NPs in the existing preparation process, which limits its application in the integration of diagnosis and treatment.
Methods: The folate-targeted LPHNPs-loaded indocyanine green/PFP-carrying oxygen (TOI_HNPs) using a combination of two-step method and solution evaporation technique for the first time. The essential properties and dual-mode imaging characteristics of developed NPs were determined. The cellular uptake of TOI_HNPs was detected by confocal microscopy and flow cytometry. The SKOV3 cell viability and apoptosis rate were evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry. The ROS was demonstrated by fluorescence microplate reader and the expression of hypoxia-inducible factor 1-alpha (HIF-1α) and IL-6 was detected by Western blot.
Results: TOI_HNPs showed spherical morphology with particle size about (166.83±5.54) nm and zeta potential at -(30.57±1.36) mV. It exhibited better stability than lipid NPs and higher encapsulation efficiency as well as active targeting ability than poly (lactic-co-glycolic acid) (PLGA) NPs. In addition, the novel NPs could also act as the contrast agents for ultrasound and photoacoustic imaging, providing precision guidance and monitoring. Furthermore, TOI_HNPs-mediated photo–sonodynamic therapy (PSDT) caused more serious cell damage and more obvious cell apoptosis, compared with other groups. The PSDT mediated by TOI_HNPs induced generation of intracellular ROS and downregulated the expression of HIF-1α and IL-6 in SKOV3 cells.
Conclusion: This kind of multifunctional-targeted nanoagent may provide an ideal strategy for combination of high therapeutic efficacy and dual-mode imaging guidance.
Keywords: core-shell nanoparticle, phase transformation, photoacoustic imaging, laser, ultasound, photo-sonodynamic therapy




Scheme 1 Schematic illustration of the synthesis and structure of TOI_HNPs.