已发表论文

布地奈德福莫特罗治疗 COPD 后不同高分辨率计算机断层显像的代谢变化

 

Authors Wang C, Li JX, Tang D, Zhang JQ, Fang LZ, Fu WP, Liu L, Dai LM

Received 20 September 2017

Accepted for publication 26 October 2017

Published 6 December 2017 Volume 2017:12 Pages 3511—3521

DOI https://doi.org/10.2147/COPD.S152134

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Charles Downs

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Chunxue Bai

Background: Metabolomics is the global unbiased analysis of all the small-molecule metabolites within a biological system. Metabolic profiling of different high-resolution computed tomography (HRCT) phenotypes of COPD patients before and after treatment may identify discriminatory metabolites that can serve as biomarkers and therapeutic agents.
Patients and methods: 
1H nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics was performed on a discovery set of plasma samples from 50 patients with stable COPD. Patients were assigned into two groups on the basis of HRCT findings including phenotype E (n=22) and phenotype M (n=28). After budesonide–formoterol treatment (160/4.5 µg ×2 inhalations twice daily for 3 months), clinical characteristics and metabolites were then compared between phenotype E pretreatment and posttreatment, phenotype M pretreatment and posttreatment, phenotype E pretreatment and phenotype M pretreatment, and phenotype E posttreatment and phenotype M posttreatment.
Results: Inhaled budesonide–formoterol therapy for both phenotype E (emphysema without bronchial wall thickening) and phenotype M (emphysema with bronchial wall thickening) was effective. However, phenotype E and phenotype M were different in response to therapy. Patients with phenotype M in response to therapeutic effects were significantly greater compared with phenotype E. Certain metabolites were identified, which were closely related to the treatment and phenotype. Metabolic changes in phenotype E or phenotype M after treatment may be involved with adenosine diphosphate (ADP), guanosine, choline, malonate, tyrosine, glycine, proline, l-alanine, l-valine, l-threonine leucine, uridine, pyruvic acid, acetone and metabolism disturbance. Metabolic differences between phenotype E and phenotype M in pretreatment and posttreatment covered glycine, D-glucose, pyruvic acid, succinate, lactate, proline, l-valine and leucine.
Conclusion: Bronchial wall thickening in COPD may be an indicator for predicting the better response to the treatment with bronchodilator and corticosteroid. The identification of metabolic alterations provides new insights into different HRCT phenotypes and therapeutic assessment of COPD.
Keywords: COPD, metabolomics, budesonide–formoterol, HRCT