已发表论文

母体暴露于纳米二氧化钛会抑制小鼠胚胎发育

 

Authors Hong F, Zhou Y, Zhao X, Sheng L, Wang L

Received 9 June 2017

Accepted for publication 8 August 2017

Published 24 August 2017 Volume 2017:12 Pages 6197—6204

DOI https://doi.org/10.2147/IJN.S143598

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Alexander Kharlamov

Peer reviewer comments 2

Editor who approved publication: Dr Linlin Sun

Abstract: Although nanoscale titanium dioxide (nano-TiO2) has been extensively used in industrial food applications and daily products for pregnant women, infants, and children, its potential toxicity on fetal development has been rarely studied. The main objective of this investigation was to establish the effects of maternal exposure of nano-TiO2 on developing embryos. Female imprinting control region mice were orally administered nano-TiO2 from gestational day 0 to 17. Our findings showed that Ti concentrations in maternal serum, placenta, and fetus were increased in nano-TiO2-exposed mice when compared to controls, which resulted in reductions in the contents of calcium and zinc in maternal serum, placenta, and fetus, maternal weight gain, placental weight, fetal weight, number of live fetuses, and fetal crown–rump length as well as cauda length, and caused an increase in the number of both dead fetuses and resorptions. Furthermore, maternal nano-TiO2 exposure inhibited development of the fetal skeleton, suggesting a significant absence of cartilage, reduced or absent ossification, and an increase in the number of fetuses with dysplasia, including exencephaly, spina bifida, coiled tail, scoliosis, rib absence, and sternum absence. These findings indicated that nano-TiO2 can cross the blood–fetal barrier and placental barrier, thereby delaying the development of fetal mice and inducing skeletal malformation. These factors may be associated with reductions in both calcium and zinc in maternal serum and the fetus, and both the placenta and embryos may be major targets of developmental toxicity following maternal exposure to nano-TiO2 during the prenatal period. Therefore, the application of nano-TiO2 should be carried out with caution.
Keywords: nanosized titanium dioxide, maternal exposure, embryonic toxicity, skeleton developmental suppression