已发表论文

通过理论研究了解 AZD4547 和 E3810 对 FGFR1 把关突变的抗性机制

 

Authors Liang D, Chen Q, Guo Y, Zhang T, Guo W

Received 11 December 2016

Accepted for publication 6 January 2017

Published 17 February 2017 Volume 2017:11 Pages 451—461

DOI https://doi.org/10.2147/DDDT.S129991

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Amy Norman

Peer reviewer comments 2

Editor who approved publication: Dr Tuo Deng

Abstract: Inhibitors targeting the amplification of the fibroblast growth factor receptor 1 (FGFR1) have found success in the treatment of FGFR1-positive squamous cell lung and breast cancers. A secondary mutation of gatekeeper residue (V561M) in the binding site has been linked to the acquired resistance. Recently, two well-known small molecule inhibitors of FGFR1, AZD4547 and E3810, reported that the V561M mutation confers significant resistance to E3810, while retaining affinity for AZD4547. FGFR1 is widely investigated as potential therapeutic target, while there are few computational studies made to understand the resistance mechanisms about FGFR1 V561M gatekeeper mutation. In this study, molecular docking, classical molecular dynamics simulations, molecular mechanics/generalized born surface area (MM/GBSA) free energy calculations, and umbrella sampling (US) simulations were carried out to make clear the principle of the binding preference of AZD4547 and E3810 toward FGFR1 V561M gatekeeper mutation. The results provided by MM/GBSA reveal that AZD4547 has similar binding affinity to both FGFR1WT and FGFR1V561M, whereas E3810 has much higher binding affinity to FGFR1WT than to FGFR1V561M. Comparison of individual energy terms indicates that the major variation of E3810 between FGFR1WT and FGFR1V561M are van der Waals interactions. In addition, US simulations prove that the potential of mean force (PMF) profile of AZD4547 toward FGFR1WT and FGFR1V561M has similar PMF depth. However, the PMF profile of E3810 toward FGFR1WT and FGFR1V561M has much higher PMF depth, suggesting that E3810 is more easily dissociated from FGFR1V561M than from FGFR1WT. The results not only show the drug-resistance determinants of FGFR1 gatekeeper mutation but also provide valuable implications and provide vital clues for the development of new inhibitors to combat drug resistance.
Keywords: FGFR1, gatekeeper mutation, V561M, theoretical study, resistance mechanisms