6 4 3 5 9

论文已发表


注册即可获取德孚的最新动态



IF 收录期刊



更多详情 >>



作者优惠计划

Favored Author Program


很高兴为我们作者提供一种切实的方法以支持开放获取,并鼓励教师和研究人员通过开放获取模式,尽可能广泛地传播他们的作品。


作者优惠计划的成员将获得:


文章发表费(APC) 10% 的折扣


这 10% 的折扣从您加入 “作者优惠计划” 之时开始,并将适用于之后提交的所有论文


*作者必须在提交论文之前注册该优惠计划,折扣不能追溯应用于已提交的论文


更多详情 >>




已发表论文

集成模型预测儿科患者万古霉素谷浓度

 

Authors Huang X, Yu Z, Bu S, Lin Z, Hao X, He W, Yu P, Wang Z, Gao F, Zhang J, Chen J

Received 31 December 2020

Accepted for publication 18 March 2021

Published 14 April 2021 Volume 2021:15 Pages 1549—1559

DOI https://doi.org/10.2147/DDDT.S299037

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Georgios D. Panos

目的:本研究旨在利用机器学习方法建立一个预测万古霉素谷浓度的最佳模型。
方法:我们纳入了自 2013 年 月至 2020 年 月在上海交通大学医学院附属新华医院静脉注射万古霉素并进行治疗药物监测的 407 例儿科患者(年龄 <18 岁)。患者年龄和体重中位数(上下四分位数)分别为 20.63-5)岁和 127.8-19kg。以万古霉素谷浓度为目标变量,采用 种不同算法进行预测性能的比较。全部数据集(407 例)按 80%20% 的比例分为训练组(325 例)和试验组(82 例)。
结果:最终选取 R2 较高的 种算法XGBoostGBRTBaggingExtraTree 和 decision treeR2 分别为 0.6570.5140.4680.425 和 0.450,建立集成模型,得到最优的预测结果。对于缺失数据,通过填充缺失值和模型集成,我们得到 R2 =0.614MAE=3.32MSE=24.39RMSE=4.94,预测准确度为 51.22%(预测谷浓度在实际谷浓度的 30% 以内)。与药代动力学模型(R2 =0.3)相比,机器学习模型拟合效果更好,具有更好的预测准确度。
结论:集合模型对于万古霉素浓度的预测有效,特别是对于个体差异较大的儿童群体。随着机器学习方法的发展,集成模型的临床价值将在临床实践中得到体现。
Keywords: machine learning, XGBoost, prediction, vancomycin, trough concentration, pediatric patients